CT Image Reconstruction via Nonlocal Low-Rank Regularization and Data-Driven Tight Frame
نویسندگان
چکیده
X-ray computed tomography (CT) is widely used in medical applications, where many efforts have been made for decades to eliminate artifacts caused by incomplete projection. In this paper, we propose a new CT image reconstruction model based on nonlocal low-rank regularity and data-driven tight frame (NLR-DDTF). Unlike the Spatial-Radon domain regularization, proposed NLR-DDTF uses an asymmetric treatment Radon inpainting, which combines approximation method spatial frame-based regularization inpainting. An alternative direction minimization algorithm designed solve model. Several numerical experiments comparisons are provided illustrate superior performance of method.
منابع مشابه
CT Image Reconstruction by Spatial-Radon Domain Data-Driven Tight Frame Regularization
This paper proposes a spatial-Radon domain CT image reconstruction model based on data-driven tight frames (SRD-DDTF). The proposed SRD-DDTF model combines the idea of joint image and Radon domain inpainting model of [1] and that of the data-driven tight frames for image denoising [2]. It is different from existing models in that both CT image and its corresponding high quality projection image...
متن کاملUndersampled MR Image Reconstruction with Data-Driven Tight Frame
Undersampled magnetic resonance image reconstruction employing sparsity regularization has fascinated many researchers in recent years under the support of compressed sensing theory. Nevertheless, most existing sparsity-regularized reconstruction methods either lack adaptability to capture the structure information or suffer from high computational load. With the aim of further improving image ...
متن کاملLow-rank matrix recovery via rank one tight frame measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...
متن کاملHyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
Hyperspectral image (HSI) possesses three intrinsic characteristics: the global correlation across spectral domain, the nonlocal self-similarity across spatial domain, and the local smooth structure across both spatial and spectral domains. This paper proposes a novel tensor based approach to handle the problem of HSI spatial super-resolution by modeling such three underlying characteristics. S...
متن کاملAccurate Sparse-Projection Image Reconstruction via Nonlocal TV Regularization
Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2021
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym13101873